Google+ Followers

mercredi 25 septembre 2013

Red meat and diabetes

  1. Pan A, Sun Q, Bernstein AM, et al. Changes in red meat consumption and subsequent risk of type 2 diabetes mellitus: three cohorts of US men and women. JAMA Intern Med. 2013:1-8.
  2. Evans WJ. Oxygen-carrying proteins in meat and risk of diabetes mellitus: Comment on "Changes in red meat consumption and subsequent risk of type 2 diabetes mellitus: three cohorts of US men and women." JAMA Intern Med. 2013:1-2.

mardi 17 septembre 2013

Paleodish of today

Tomatoes, red peppers, raw albacore tuna, flowers of broccoli, parsley, olive oil, lemon salt...
Then Mâche salad and orange with crème fraîche épaisse...
Drinking: water and a small glass of Graves 
Ready in 25' in the new flat of my son in Paris
Afternoon: no sleepish state, energy until 6pm etc!
Go paleo!

lundi 16 septembre 2013

Metabolic effects of sugared drinks

More on fructose and Met syndrome

"We are now suffering a huge epidemic of metabolic syndrome... and we can correlate the onset of the epidemic with the increased consumption of sugars,"
"The changes in the wild type mice were brought on by fructose converted from glucose via the polyol pathway, wrote Miguel A. Lanaspa, DVM, PhD, asssistant research professor of medicine at the University of Colorado, and his co-authors.
The polyol pathway is triggered by high serum glucose. When that happens, aldose reductase (AR) metabolizes glucose to sorbitol, which is converted to fructose by sorbitol dehydrogenase."

So is it endogenous fructose, exogenous fructose or both? In humans we don't know but fructose is in the box...

Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome


Carbohydrates with high glycaemic index are proposed to promote the development of obesity, insulin resistance and fatty liver, but the mechanism by which this occurs remains unknown. High serum glucose concentrations are known to induce the polyol pathway and increase fructosegeneration in the liver. Here we show that this hepatic, endogenously produced fructose causes systemic metabolic changes. We demonstrate that mice unable to metabolize fructose are protected from an increase in energy intake and body weight, visceral obesity, fatty liver, elevated insulin levels and hyperleptinaemia after exposure to 10% glucose for 14 weeks. In normal mice, glucose consumption is accompanied by aldose reductase and polyol pathway activation in steatotic areas. In this regard, we show that aldose reductase-deficient mice are protected against glucose-induced fatty liver. We conclude that endogenous fructose generation and metabolism in the liver represents an important mechanism by which glucose promotes the development of metabolic syndrome.

  • Atkins, R. Dr Atkins’ New Diet Revolution Avon Books (1998).
  • Ebbeling, C. B.Leidig, M. M.Feldman, H. A.Lovesky, M. M. & Ludwig, D. S. Effects of a low-glycemic load versus low-fat diet in obese young adults: a randomized trialJAMA 297,20922102 (2007).
  • Gardner, C. D. et al. Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z Weight Loss Study: a randomized trialJAMA 297969977 (2007).
  • Dansinger, M. L.Gleason, J. A.Griffith, J. L.Selker, H. P. & Schaefer, E. J. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trialJAMA 2934353 (2005).
  • Foster, G. D. et al. Weight and metabolic outcomes after 2 years on a low-carbohydrate versus low-fat diet: a randomized trialAnn. Intern. Med. 153147157 (2010).
  • Tappy, L. & Le, K. A. Metabolic effects of fructose and the worldwide increase in obesity.Physiol. Rev. 902346 (2010).
  • Havel, P. J. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolismNutr. Rev. 63133157 (2005).
  • Johnson, R. J. et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease.Am. J. Clin. Nutr. 86899906 (2007).
  • Johnson, R. J. et al. Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes? Endocr. Rev. 3096116 (2009).
  • Nakagawa, T. et al. A causal role for uric acid in fructose-induced metabolic syndromeAm. J. Physiol. 290F625F631 (2006).
  • Gersch, M. S. et al. Fructose, but not dextrose, accelerates the progression of chronic kidney diseaseAm. J. Physiol. 293F1256F1261 (2007).
  • Stanhope, K. L. et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humansJ. Clin. Invest. 11913221334 (2012).
  • Ludwig, D. S.Peterson, K. E. & Gortmaker, S. L. Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysisLancet 357,505508 (2001).
  • Schulze, M. B. et al. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged womenJAMA 292927934 (2004).
  • Ouyang, X. et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease.J. Hepatol. 48993999 (2008).
  • Hu, F. B. & Malik, V. S. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: epidemiologic evidencePhysiol. Behav. 1004754 (2010).
  • Malik, V. S.Popkin, B. M.Bray, G. A.Despres, J. P. & Hu, F. B. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease riskCirculation12113561364 (2010).
  • Malik, V. S. et al. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysisDiabetes care 3324772483 (2010).
  • Ludwig, D. S. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular diseaseJAMA 28724142423 (2002).
  • Willett, W.Manson, J. & Liu, S. Glycemic index, glycemic load, and risk of type 2 diabetes.Am. J. Clin. Nutr. 76274S280S (2002).
  • Jenkins, D. J. et al. Glycemic index of foods: a physiological basis for carbohydrate exchangeAm. J. Clin. Nutr. 34362366 (1981).
  • Liese, A. D. et al. Dietary glycemic index and glycemic load, carbohydrate and fiber intake, and measures of insulin sensitivity, secretion, and adiposity in the Insulin Resistance Atherosclerosis StudyDiabetes Care 2828322838 (2005).
  • Ebbeling, C. B. et al. Effects of dietary composition on energy expenditure during weight-loss maintenanceJAMA 30726272634 (2012).
  • Segal, M. S.Gollub, E. & Johnson, R. J. Is the fructose index more relevant with regards to cardiovascular disease than the glycemic index? Eur. J. Nutr. 46406417 (2007).
  • Ishimoto, T. et al. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in miceProc. Natl Acad. Sci. USA 10943204325 (2012).
  • Diggle, C. P. et al. Both isoforms of ketohexokinase are dispensable for normal growth and developmentPhysiol. Genomics 42A235243 (2010).
  • Van den Berghe, G. Fructose: metabolism and short-term effects on carbohydrate and purine metabolic pathwaysProg. Biochem. Pharmacol. 21132 (1986).
  • Qiu, L. et al. Aldose reductase regulates hepatic peroxisome proliferator-activated receptor alpha phosphorylation and activity to impact lipid homeostasisJ. Biol. Chem. 283,1717517183 (2008).
  • Qiu, L. et al. Inhibition of aldose reductase activates hepatic peroxisome proliferator-activated receptor-alpha and ameliorates hepatosteatosis in diabetic db/db miceExp. Diabetes Res. 2012(2012).
  • Roncal-Jimenez, C. A. et al. Sucrose induces fatty liver and pancreatic inflammation in male breeder rats independent of excess energy intakeMetabolism 6012591270 (2011).
  • Guglielmi, F. W. et al. Total parenteral nutrition-related gastroenterological complications.Dig. Liver Dis. 38623642 (2006).
  • Nishimura, M.Yamaguchi, M.Naito, S. & Yamauchi, A. Soybean oil fat emulsion to prevent TPN-induced liver damage: possible molecular mechanisms and clinical implicationsBiol. Pharm. Bull 29855862 (2006).
  • Ushijima, K.Riby, J. E.Fujisawa, T. & Kretchmer, N. Absorption of fructose by isolated small intestine of rats is via a specific saturable carrier in the absence of glucose and by the disaccharidase-related transport system in the presence of glucoseJ. Nutr. 12521562164(1995).
  • Brownell, K. D. et al. The public health and economic benefits of taxing sugar-sweetened beveragesN. Engl. J. Med. 36115991605 (2009).
  • Vartanian, L. R.Schwartz, M. B. & Brownell, K. D. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysisAm. J. Public Health 97,667675 (2007).
  • Maersk, M. et al. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention studyAm. J. Clin. Nutr. 95283289(2012).
  • Diggle, C. P. et al. Ketohexokinase: expression and localization of the principal fructose-metabolizing enzymeJ. Histochem. Cytochem. 57763774 (2009).
  • Trinh, C. H.Asipu, A.Bonthron, D. T. & Phillips, S. E. Structures of alternatively spliced isoforms of human ketohexokinaseActa Crystallogr. D. Biol. Crystallogr. 65201211(2009).
  • Brunt, E. M. Grading and staging the histopathological lesions of chronic hepatitis: the Knodell histology activity index and beyondHepatology 31241246 (2000).
  • Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver diseaseHepatology 4113131321 (2000).
  • Orlicky, D. J. et al. Chronic ethanol consumption in mice alters hepatocyte lipid droplet propertiesAlcohol Clin. Exp. Res. 3542 (2011).
  • Lanaspa, M. A. et al. The tight junction protein, MUPP1, is up-regulated by hypertonicity and is important in the osmotic stress response in kidney cellsProc. Natl Acad. Sci. USA 104,1367213677 (2007).